

All future predictions are uncertain; therefore, we tend to qualify them using terms such as highly likely, likely, or unlikely. When these terms are used, they should be defined. Your region may have standard definitions for these terms, which should be reproduced in your SSA Report. Another alternative is to adopt terminology specified by The International Panel on Climate Change (IPCC) in their report on climate change. They provide two tables, one for confidence terminology (see Table 1), and one for likelihood terminology (see Table 2). These tables are often adopted in the environmental science literature.

Confidence Terminology	Degree of confidence in being correct
Very high confidence	At least 9 out of 10 chance
High confidence	About 8 out of 10 chance
Medium confidence	About 5 out of 10 chance
Low confidence	About 2 out of 10 chance
Very low confidence	Less than 1 out of 10 chance

 Table 1. Confidence Terminology (IPCC, 2007, Uncertainty Guidance Note, p. 3)

 Table 2. Likelihood Terminology (IPCC, 2007, Uncertainty Guidance Note, p. 4)

Likelihood Terminology	Likelihood of the occurrence/ outcome
Virtually certain	> 99% probability
Extremely likely	> 95% probability
Very likely	> 90% probability

These materials are offered for instructional purposes only. Nothing here should be construed as official government policy.

Likely	> 66% probability
More likely than not	> 50% probability

Another approach is to start with the IPCC's terminology as a baseline and modify it to suit your situation (Table 3).

Table 3. Sample Definitions for Terms Used in a Qualitative Analysis

Confidence Terminology	Explanation
Highly Confident	We are more than 90% sure that this relationship or assumption accurately reflects the reality in the wild as supported by documented accounts or research and/or is strongly consistent with accepted conservation biology principles.
Moderately Confident	We are 70 to 90% sure that this relationship or assumption accurately reflects the reality in the wild as supported by some available information and/or is consistent with accepted conservation biology principles.
Somewhat Confident	We are 50 to 70% sure that this relationship or assumption accurately reflects the reality in the wild as supported by some available information and/or is consistent with accepted conservation biology principles.

Not Confident

We are less than **50% sure** that this relationship or assumption accurately reflects the reality in the wild because no supporting available is information and/or uncertainty exists about the consistency with accepted conservation biology principles. Indicates areas of high uncertainty.

Another important methodological factor to consider in this section is the timeframe used for future scenarios. This timeframe could be a specified number of years (i.e., 20, 30, etc.) or a time range (2018–2036), depending on the available data. We have broad discretion to define the future timescale for the purposes of our analysis, but we must do so in a way that makes sense based on the data at hand. These data may be biological—connected to the species life cycle—or ecological—related to the factors influencing the species. Any failure to state our rationale could result in a charge of being arbitrary or capricious, so this explanation is critical.